Rick Bell Rick Bell
0 Course Enrolled • 0 Course CompletedBiography
1Z0-1127-25試験の準備方法|実用的な1Z0-1127-25勉強時間試験|権威のあるOracle Cloud Infrastructure 2025 Generative AI Professional試験勉強攻略
かつてないほどの才能の才能が大量に出てきたので、現代の才能はどのような能力を所有し、最終的に成功へと歩むべきでしょうか?まあ、もちろん、それはあなたに社会での地位の資本を与える1Z0-1127-25試験資格認定です。 1Z0-1127-25準備資料では、公式の試験銀行に最新の学習モデルと包括的な知識構造が表示されます。これは、技術スキルの向上と将来への価値の創造を目的としています。 1Z0-1127-25試験の高度な質問とともに1Z0-1127-25試験に合格する必要があります。
Oracle 1Z0-1127-25 認定試験の出題範囲:
トピック | 出題範囲 |
---|---|
トピック 1 |
|
トピック 2 |
|
トピック 3 |
|
トピック 4 |
|
早速ダウンロードOracle 1Z0-1127-25勉強時間 は主要材料 & 人気のある1Z0-1127-25: Oracle Cloud Infrastructure 2025 Generative AI Professional
Oracleの1Z0-1127-25試験に準備するために、たくさんの本と塾なしで、我々Jpexamのソフトを使用すればリラクスで目標を達成できます。弊社の商品はあなたの圧力を減少できます。それだけでなく、お金を無駄にする心配なあなたに保障を提供いたします。あなたは弊社の商品を利用して、一回でOracleの1Z0-1127-25試験に合格できなかったら、弊社は全額で返金することを承諾いたします。
Oracle Cloud Infrastructure 2025 Generative AI Professional 認定 1Z0-1127-25 試験問題 (Q28-Q33):
質問 # 28
What is the characteristic of T-Few fine-tuning for Large Language Models (LLMs)?
- A. It selectively updates only a fraction of weights to reduce the number of parameters.
- B. It increases the training time as compared to Vanilla fine-tuning.
- C. It updates all the weights of the model uniformly.
- D. It selectively updates only a fraction of weights to reduce computational load and avoid overfitting.
正解:D
解説:
Comprehensive and Detailed In-Depth Explanation=
T-Few fine-tuning (a Parameter-Efficient Fine-Tuning method) updates a small subset of the model's weights, reducing computational cost and mitigating overfitting compared to Vanilla fine-tuning, which updates all weights. This makes Option C correct. Option A describes Vanilla fine-tuning, not T-Few. Option B is incomplete, as it omits the overfitting benefit. Option D is false, as T-Few typically reduces training time due to fewer updates. T-Few balances efficiency and performance.
OCI 2025 Generative AI documentation likely describes T-Few under fine-tuningoptions.
質問 # 29
What do prompt templates use for templating in language model applications?
- A. Python's class and object structures
- B. Python's lambda functions
- C. Python's list comprehension syntax
- D. Python's str.format syntax
正解:D
解説:
Comprehensive and Detailed In-Depth Explanation=
Prompt templates in LLM applications (e.g., LangChain) typically use Python's str.format() syntax to insert variables into predefined string patterns (e.g., "Hello, {name}!"). This makes Option B correct. Option A (list comprehension) is for list operations, not templating. Option C (lambda functions) defines functions, not templates. Option D (classes/objects) is overkill-templates are simpler constructs. str.format() ensures flexibility and readability.
OCI 2025 Generative AI documentation likely mentions str.format() under prompt template design.
質問 # 30
What does the RAG Sequence model do in the context of generating a response?
- A. It retrieves a single relevant document for the entire input query and generates a response based on that alone.
- B. It retrieves relevant documents only for the initial part of the query and ignores the rest.
- C. For each input query, it retrieves a set of relevant documents and considers them together to generate a cohesive response.
- D. It modifies the input query before retrieving relevant documents to ensure a diverse response.
正解:C
解説:
Comprehensive and Detailed In-Depth Explanation=
The RAG (Retrieval-Augmented Generation) Sequence model retrieves a set of relevant documents for a query from an external knowledge base (e.g., via a vector database) and uses them collectively with the LLM to generate a cohesive, informed response. This leverages multiple sources for better context, making Option B correct. Option A describes a simpler approach (e.g., RAG Token), not Sequence. Option C is incorrect-RAG considers the full query. Option D is false-query modification isn't standard in RAG Sequence. This method enhances response quality with diverse inputs.
OCI 2025 Generative AI documentation likely details RAG Sequence under retrieval-augmented techniques.
質問 # 31
Which statement is true about Fine-tuning and Parameter-Efficient Fine-Tuning (PEFT)?
- A. PEFT requires replacing the entire model architecture with a new one designed specifically for the new task, making it significantly more data-intensive than Fine-tuning.
- B. Fine-tuning requires training the entire model on new data, often leading to substantial computational costs, whereas PEFT involves updating only a small subset of parameters, minimizing computational requirements and data needs.
- C. Fine-tuning and PEFT do not involve model modification; they differ only in the type of data used for training, with Fine-tuning requiring labeled data and PEFT using unlabeled data.
- D. Both Fine-tuning and PEFT require the model to be trained from scratch on new data, making them equally data and computationally intensive.
正解:B
解説:
Comprehensive and Detailed In-Depth Explanation=
Fine-tuning updates all model parameters on task-specific data, incurring high computational costs, while PEFT (e.g., LoRA, T-Few) updates a small subset of parameters, reducing resource demands and often requiring less data, making Option A correct. Option B is false-PEFT doesn't replace architecture. Option C is incorrect, as PEFT isn't trained from scratch and is less intensive. Option D is wrong, as both involve modification, but PEFT is more efficient. This distinction is critical for practical LLM customization.
OCI 2025 Generative AI documentation likely compares Fine-tuning and PEFT under customization techniques.
Here is the next batch of 10 questions (31-40) from your list, formatted as requested with detailed explanations. The answers are based on widely accepted principles in generative AI and Large Language Models (LLMs), aligned with what is likely reflected in the Oracle Cloud Infrastructure (OCI) 2025 Generative AI documentation. Typographical errors have been corrected for clarity.
質問 # 32
Which is a distinctive feature of GPUs in Dedicated AI Clusters used for generative AI tasks?
- A. The GPUs allocated for a customer's generative AI tasks are isolated from other GPUs.
- B. GPUs are shared with other customers to maximize resource utilization.
- C. Each customer's GPUs are connected via a public Internet network for ease of access.
- D. GPUs are used exclusively for storing large datasets, not for computation.
正解:A
解説:
Comprehensive and Detailed In-Depth Explanation=
In Dedicated AI Clusters (e.g., in OCI), GPUs are allocated exclusively to a customer for their generative AI tasks, ensuring isolation for security, performance, and privacy. This makes Option B correct. Option A describes shared resources, not dedicated clusters. Option C is false, as GPUs are for computation, not storage. Option D is incorrect, as public Internet connections would compromise security and efficiency.
OCI 2025 Generative AI documentation likely details GPU isolation under DedicatedAI Clusters.
質問 # 33
......
JpexamはOracleの1Z0-1127-25「Oracle Cloud Infrastructure 2025 Generative AI Professional」試験に向けて問題集を提供する専門できなサイトで、君の専門知識を向上させるだけでなく、一回に試験に合格するのを目標にして、君がいい仕事がさがせるのを一生懸命頑張ったウェブサイトでございます。
1Z0-1127-25試験勉強攻略: https://www.jpexam.com/1Z0-1127-25_exam.html
- 1Z0-1127-25試験の準備方法|便利な1Z0-1127-25勉強時間試験|信頼的なOracle Cloud Infrastructure 2025 Generative AI Professional試験勉強攻略 😭 ✔ www.xhs1991.com ️✔️サイトにて⇛ 1Z0-1127-25 ⇚問題集を無料で使おう1Z0-1127-25試験攻略
- 1Z0-1127-25対応問題集 🎑 1Z0-1127-25一発合格 📔 1Z0-1127-25練習問題 🎆 ⇛ www.goshiken.com ⇚にて限定無料の【 1Z0-1127-25 】問題集をダウンロードせよ1Z0-1127-25問題トレーリング
- 1Z0-1127-25合格内容 🍬 1Z0-1127-25資格問題対応 ✏ 1Z0-1127-25対応問題集 📆 「 1Z0-1127-25 」の試験問題は▛ www.pass4test.jp ▟で無料配信中1Z0-1127-25試験攻略
- 1Z0-1127-25練習問題 🧹 1Z0-1127-25資格問題対応 ⏲ 1Z0-1127-25対応問題集 🦊 サイト➥ www.goshiken.com 🡄で{ 1Z0-1127-25 }問題集をダウンロード1Z0-1127-25試験復習
- 1Z0-1127-25試験勉強過去問 🍳 1Z0-1127-25参考書 👿 1Z0-1127-25対応問題集 🙁 ( www.passtest.jp )には無料の▷ 1Z0-1127-25 ◁問題集があります1Z0-1127-25トレーリングサンプル
- 更新のOracle 1Z0-1127-25勉強時間 は主要材料 - 有効的な1Z0-1127-25: Oracle Cloud Infrastructure 2025 Generative AI Professional 🔂 URL ☀ www.goshiken.com ️☀️をコピーして開き、[ 1Z0-1127-25 ]を検索して無料でダウンロードしてください1Z0-1127-25日本語版試験解答
- 効率的な1Z0-1127-25勉強時間 - 合格スムーズ1Z0-1127-25試験勉強攻略 | 実用的な1Z0-1127-25日本語認定 ♿ 今すぐ[ www.it-passports.com ]を開き、➤ 1Z0-1127-25 ⮘を検索して無料でダウンロードしてください1Z0-1127-25試験勉強過去問
- 効果的な1Z0-1127-25勉強時間 - 合格スムーズ1Z0-1127-25試験勉強攻略 | 便利な1Z0-1127-25日本語認定 🔥 ▷ 1Z0-1127-25 ◁を無料でダウンロード⮆ www.goshiken.com ⮄で検索するだけ1Z0-1127-25対策学習
- 1Z0-1127-25サンプル問題集 🔖 1Z0-1127-25合格記 👆 1Z0-1127-25問題トレーリング 🏵 ▷ www.pass4test.jp ◁で使える無料オンライン版➡ 1Z0-1127-25 ️⬅️ の試験問題1Z0-1127-25対策学習
- 1Z0-1127-25参考書 😹 1Z0-1127-25試験攻略 👣 1Z0-1127-25参考資料 🖖 ウェブサイト“ www.goshiken.com ”を開き、➡ 1Z0-1127-25 ️⬅️を検索して無料でダウンロードしてください1Z0-1127-25参考書
- 効果的な1Z0-1127-25勉強時間 - 合格スムーズ1Z0-1127-25試験勉強攻略 | 便利な1Z0-1127-25日本語認定 👾 ウェブサイト▷ www.it-passports.com ◁から⮆ 1Z0-1127-25 ⮄を開いて検索し、無料でダウンロードしてください1Z0-1127-25対応問題集
- 1Z0-1127-25 Exam Questions
- kellywood.com.au mapadvantagesat.com mylearningdepot.com www.elearning.corpacademia.com clickandlearnhub.com www.soulcreative.online sheerpa.fr projectsoftskills.com sb.gradxacademy.in educational.globalschool.world